ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE B.E. / B.TECH. DEGREE EXAMINATIONS : NOV / DEC 2010 REGULATIONS : 2008

THIRD SEMESTER

080100008 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS (COMMON TO CIVIL / EEE / EIE / ICE / ECE / BIOMEDICAL / BIOTECH / AERO / AUTO / CSE / IT / MECHANICAL / CHEMICAL / FT / TT / TC)

Time: 3 Hours

Max.Marks: 100

PART - A

(20 x 2 = 40 Marks)

ANSWER ALL QUESTIONS

- 1. State the conditions for f(x) to have Fourier series expansion.
- 2. Write a_0 , a_n in the expansion of $x+x^3$ as Fourier Series in $(-\pi, \pi)$.
- 3. Expand f(x)=1 in a sine series in 0<x< π
- 4. Find Root Mean Square value of the function f(x) = x in the interval (0, l).
- 5. Define Fourier Transform Pair.
- 6. Find Fourier Cosine transform of e^{-2x}
- 7. If F(S) is the Fourier Transform of f(x) show that the Fourier Transform of

 $e^{iax} f(x)$ is F(S+a).

- 8. State Parseval's Identity for Fourier Transform.
- 9. Eliminate the arbitrary constants a & b from $z = (x^2 + a)(y^2 + b)$.
- 10. Form the PDE by eliminating the functions from z = f(x+t) + g(x-t).

1

- 11. Find the complete integral q = 2px.
- 12. Solve $(D^3-3DD'^2+2D'^3) z = 0$.

090107182029

- 13. Find the nature of PDE $4u_{xx}+4u_{xy+}u_{yy}+2u_{x-}u_{y}=0$.
- 14. What are the various solutions of one dimensional Wave Equation?
- 15. A string is stretched and fastened to two points 'l' apart. Motion is started by

displacing the string into the form $y=y_0 Sin(\frac{\pi x}{l})$ from which it is released at time t=0.

Formulate this problem as the boundary value problem.

- 16. A rod of length 20cm whose one end is kept at 30^oC and the other end is kept at 70^oC is maintained so until steady state prevails. Find the steady state temperature.
- 17. Find $Z[e^{-an}]$.
- 18. Prove that $Z[n] = \frac{z}{(z-1)^2}$
- 19. Prove that Z[f(n+1)] = zF(z) zf(0)
- 20. State Initial and Final value theorem on Z- transform.

PART - B

$(5 \times 12 = 60 \text{ Marks})$

ANSWER ANY FIVE QUESTIONS

21(a).If $f(x) = \left(\frac{\pi - x}{2}\right)$ find the Fourier Series of the period 2π in the interval $(0, 2\pi)$.

Hence deduce that
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$
 (8)

(b). Find the Fourier expansion of f(x) = x in the interval $(-\pi, \pi)$ (4)

2

22. Show that the Fourier Transform of
$$f(x) = \begin{cases} a^2 - x^2 & |x| \le a \\ 0 & otherwise \end{cases}$$
 is
 $2\sqrt{\frac{2}{\pi}} \left(\frac{\sin as - as \cos as}{s^3} \right)$ Hence deduce that $\int_0^{\infty} \frac{\sin t - t \cos t}{t^3} dt = \frac{\pi}{4}$
Using Parseval's Identity show that $\int_0^{\pi} \left(\frac{\sin t - t \cos t}{t^3} \right)^2 dt = \frac{\pi}{15}$
23.(a) Solve (mz-ny)p + (nx-lz)q = ly-mx (6)
(b) Solve (D³ + D²D'-DD'²-D'³)z=e^{x} Cos2Y (6)
24. A string of length l is initially at rest in its equillibrium position and motion is
started by giving each of its points is given a velocity $V = \begin{cases} cx & 0 \le x \le l/2 \\ c(l-x), l/2 \le x \le l \end{cases}$

25 (a) Evaluate
$$z^{-1} \left[\frac{z}{z^2 + 7z + 10} \right]$$
 (6)

(b) Using z-transforms solve u(n+2) - 5u(n+1) + 6u(n)=4" given that u(0)=0, u(1)=1
 (6)

26(a) Find the constant term and the coefficient of the first sine and cosine terms in
 the Fourier expansion of, y=f(x) as given in the following table:- (6)

3

х	0	1	2	3	4	5	6
f(x)	9	18	24	28	26	20	9

26(b) Find the Fourier transform of
$$f(x) = \begin{cases} 1 - |x| & |x| \le 1 \\ 0 & otherwise \end{cases}$$

hence find the value of
$$\int_{0}^{\infty} \frac{\sin^4 x}{x^4} dx$$

A metal bar 30cm long has its ends A and B kept at 20° C and 80° C respectively, until steady state conditions prevail. The temperature at each end is then suddenly reduced to 0° C and kept so. Find the resulting temperature u(x,t) taking x=0 at A.

28(a) Solve
$$p(1+q) = qz$$
 (6)

(b) Using Convolution theorem, evaluate Z

27.

$$\left[\frac{z^2}{(z-1)(z-3)}\right] \tag{6}$$

(6)

*****THE END*****

4