ANNA UNIVERSITY, CHENNAI

AFFILIATED INSTITUTIONS

REGULATIONS 2013

II SEMESTER CURRICULUM

THEORY						
Course Code	Course Title	L	Т	Р	С	
HS6251	Technical English - II	3	1	0	4	
MA6251	Mathematics - II	3	1	0_	4	
PH6251	Engineering Physics - II	3	0	0	3	
CY6251	Engineering Chemistry - II	3	0	0	3	
GE6252	Basic Electrical and Electronics Engineering	4	0	0	4	
GE6253	Engineering Mechanics	3	1	Ó	4	

PRACTICAL		_					
Course Code	Course Title		11	L	Т	Р	С
GE6261	Computer Aided Drafting and Modeling Laboratory		411	0	1	2	2
GE6262	Physics and Chemistry Laboratory - II			0	0	2	1
GE6263	Computer Programming Laboratory			0	1	2	2

II Semester curriculum and Syllabi are common for the following programmes under the

Faculty of Technology

- 1. B.Tech. Polymer Technology
- 2. B.Tech. Plastics Technology
- 3. B.Tech. Textile Technology
- 4. B.Tech. Textiles Fashion Technology / Fashion Technology /

Textile Technology (Fashion Technology)

- 5. B.Tech. Petroleum Engineering
- 6. B.Tech. Textile Chemistry
- 7. B.Tech. Chemical and Electrochemical Engineering
- 8. B.Tech. Petrochemical Technology
- 9. B.E. Petrochemical Engineering

HS6251

TECHNICAL ENGLISH II

L T P C 3 1 0 4

OBJECTIVES:

- To make learners acquire listening and speaking skills in both formal and informal contexts.
- To help them develop their reading skills by familiarizing them with different types of reading strategies.
- To equip them with writing skills needed for academic as well as workplace contexts.
- To make them acquire language skills at their own pace by using e-materials and language lab components.

OUTCOMES:

Learners should be able to

- speak convincingly, express their opinions clearly, initiate a discussion, negotiate argue using appropriate communicative strategies.
- write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.
- read different genres of texts, infer implied meanings and critically analyse and evaluate them for ideas as well as for method of presentation.
- listen/view and comprehend different spoken excerpts critically and infer unspoken and implied meanings.

UNIT I 9+3

Listening - Listening to informal conversations and participating; Speaking - Opening a conversation (greetings, comments on topics like weather) - Turn taking - Closing a conversation (excuses, general wish, positive comment, thanks); Reading - Developing analytical skills, Deductive and inductive reasoning - Extensive reading; Writing - Effective use of SMS for sending short notes and messages - Using 'emoticons' as symbols in email messages; Grammar - Regular and irregular verbs - Active and passive voice; Vocabulary - Homonyms (e.g. 'can') - Homophones (e.g. 'some', 'sum'); Ematerials - Interactive exercise on Grammar and vocabulary - blogging; Language Lab - Listening to different types of conversation and answering questions.

UNIT II 9 + 3

Listening - Listening to situation based dialogues; Speaking - Conversation practice in real life situations, asking for directions (using polite expressions), giving directions (using imperative sentences), Purchasing goods from a shop, Discussing various aspects of a film (they have already seen) or a book (they have already read); Reading - Reading a short story or an article from newspaper, Critical reading, Comprehension skills; Writing - Writing a review / summary of a story / article, Personal letter (Inviting your friend to a function, congratulating someone for his / her success, thanking one's friends / relatives); Grammar - modal verbs, Purpose expressions; Vocabulary - Phrasal verbs and their meanings, Using phrasal verbs in sentences; E-materials - Interactive exercises on Grammar and vocabulary, Extensive reading activity (reading stories / novels), Posting reviews in blogs - Language Lab - Dialogues (Fill up exercises), Recording students' dialogues.

UNIT III 9 + 3

Listening - Listening to the conversation - Understanding the structure of conversations; Speaking - Conversation skills with a sense of stress, intonation, pronunciation and meaning - Seeking information — expressing feelings (affection, anger, regret, etc.); Reading - Speed reading — reading passages with time limit - Skimming; Writing - Minutes of meeting — format and practice in the preparation of minutes - Writing summary after reading articles from journals - Format for journal articles — elements of technical articles (abstract, introduction, methodology, results, discussion, conclusion, appendices, references) - Writing strategies; Grammar - Conditional clauses - Cause and effect expressions; Vocabulary - Words used as nouns and verbs without any change in the spelling (e.g. 'rock', 'train', 'ring'); E-materials - Interactive exercise on Grammar and vocabulary - Speed Reading practice exercises; Language Lab - Intonation practice using EFLU and RIE materials — Attending a meeting and writing minutes.

UNIT IV 9 + 3

Listening - Listening to a telephone conversation, Viewing model interviews (face-to-face, telephonic and video conferencing); Speaking - Role play practice in telephone skills-listening and responding, -asking questions, -note taking – passing on messages, Role play and mock interview for grasping interview skills; Reading - Reading the job advertisements and the profile of the company concerned – scanning, Writing - Applying for a job – cover letter - résumé preparation – vision, mission and goals of the candidate; Grammar - Numerical expressions - Connectives (discourse markers); Vocabulary - Idioms and their meanings – using idioms in sentences; E-materials - Interactive exercises on Grammar and Vocabulary - Different forms of résumés- Filling up a résumé / cover letter; Language Lab - Telephonic interview – recording the responses - e-résumé writing.

UNIT V 9+3

Listening - Viewing a model group discussion and reviewing the performance of each participant - Identifying the characteristics of a good listener; Speaking - Group discussion skills - initiating the discussion - exchanging suggestions and proposals - expressing dissent/agreement - assertiveness in expressing opinions - mind mapping technique; Reading - Note making skills - making notes from books, or any form of written materials - Intensive reading; Writing - Checklist - Types of reports - Feasibility / Project report - report format - recommendations / suggestions - interpretation of data (using charts for effective presentation); Grammar - Use of clauses; Vocabulary - Collocation; E-materials - Interactive grammar and vocabulary exercises - Sample GD - Pictures for discussion, Interactive grammar and vocabulary exercises; Language Lab - Different models of group discussion.

TOTAL: 60 PERIODS

TEXTBOOKS

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012
- 2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011

REFERENCES

- Anderson, Paul V. Technical Communication: A Reader-Centered Approach. Cengage. New Delhi. 2008
- Muralikrishna, & Sunita Mishra. Communication Skills for Engineers. Pearson, New Delhi. 2011
- 3. Riordan, Daniel. G. Technical Communication. Cengage Learning, New Delhi. 2005
- 4. Sharma, Sangeetha & Binod Mishra. Communication Skills for Engineers and Scientists. PHI Learning, New Delhi. 2009
- 5. Smith-Worthington, Darlene & Sue Jefferson. Technical Writing for Success. Cengage, Mason USA. 2007

EXTENSIVE Reading (Not for Examination)

1. Khera, Shiv. You can Win. Macmillan, Delhi. 1998.

Websites

- 1. http://www.englishclub.com
- 2. http://owl.english.purdue.edu

TEACHING METHODS:

- Lectures
- Activities conducted individually, in pairs and in groups like individual writing and presentations, group discussions, interviews, reporting, etc
- Long presentations using visual aids
- Listening and viewing activities with follow up activities like discussions, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc
- Projects like group reports, mock interviews etc using a combination of two or more of the language skills

EVALUATION PATTERN:

Internal assessment: 20%

3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like

- Project
- Assignment
- Report
- Creative writing, etc.

All the four skills are to be tested with equal weightage given to each.

- ✓ Speaking assessment: Individual presentations, Group discussions
- ✓ Reading assessment: Reading passages with comprehension questions graded following Bloom's taxonomy
- ✓ Writing assessment: Writing essays, CVs, reports etc. Writing should include grammar and vocabulary.
- ✓ Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content graded following Bloom's taxonomy.

End Semester Examination: 80%

OBJECTIVES:

- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.
- To acquaint the student with the concepts of vector calculus, needed for problems in all engineering disciplines.
- To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow the of electric current.
- To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I VECTOR CALCULUS

9+3

Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem in a plane, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds.

UNIT II ORDINARY DIFFERENTIAL EQUATIONS

9 + 3

Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

UNIT III LAPLACE TRANSFORM

9+3

Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms. Transforms of unit step function and impulse functions – Transform of periodic functions. Inverse Laplace transform - Statement of Convolution theorem – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

UNIT IV ANALYTIC FUNCTIONS

9 + 3

Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z^2 , e^z and bilinear transformation.

UNIT V COMPLEX INTEGRATION

9+3

Complex integration – Statement and applications of Cauchy's integral theorem and Cauchy's integral formula – Taylor's and Laurent's series expansions – Singular points – Residues – Cauchy's residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

TOTAL: 60 PERIODS

TEXT BOOKS:

- 1. Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., (2011).
- 2. Grewal. B.S, "Higher Engineering Mathematics", 41 st Edition, Khanna Publications, Delhi, (2011).

REFERENCES:

- 1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., (2011)
- 2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, (2012).
- 3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, (2012).
- 4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2008).

PH6251

ENGINEERING PHYSICS - II

LT PC

OBJECTIVE:

• To enrich the understanding of various types of materials and their applications in engineering and technology.

UNIT I CONDUCTING MATERIALS

9

Conductors – classical free electron theory of metals – Electrical and thermal conductivity – Wiedemann – Franz law – Lorentz number – Draw backs of classical theory – Quantum theory – Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.

UNIT II SEMICONDUCTING MATERIALS

q

Intrinsic semiconductor – carrier concentration derivation – Fermi level – Variation of Fermi level with temperature – electrical conductivity – band gap determination – compound semiconductors -direct and indirect band gap- derivation of carrier concentration in n-type and p-type semiconductor – variation of Fermi level with temperature and impurity concentration — Hall effect –Determination of Hall coefficient – Applications.

UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS

9

Origin of magnetic moment – Bohr magneton – comparison of Dia, Para and Ferro magnetism – Domain theory – Hysteresis – soft and hard magnetic materials – antiferro nagnetic materials – Ferrites and its applications

Superconductivity: properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High T_c superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

UNIT IV DIELECTRIC MATERIALS

9

Electrical susceptibility – dielectric constant – electronic, ionic, orientational and space charge polarization – frequency and temperature dependence of polarisation – internal field – Claussius – Mosotti relation (derivation) – dielectric loss – dielectric breakdown – uses of dielectric materials (capacitor and transformer) – ferroelectricity and applications.

UNIT V ADVANCED ENGINEERING MATERIALS

9

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials—Preparation -pulsed laser deposition — chemical vapour deposition — Applications — NLO materials — Birefringence- optical Kerr effect — Classification of Biomaterials and its applications

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Arumugam M., Materials Science. Anuradha publishers, 2010
- 2. Pillai S.O., Solid State Physics. New Age International(P) Ltd., publishers, 2009

REFERENCES:

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2011
- 2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011
- 3. Mani P. Engineering Physics II. Dhanam Publications, 2011
- 4. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009

CY6251

ENGINEERING CHEMISTRY-II

L T P C 3 0 0 3

UNIT I WATER TECHNOLOGY

9

Introduction to boiler feed water-requirements-formation of deposits in steam boilers and heat exchangers- disadvantages (wastage of fuels, decrease in efficiency, boiler explosion) prevention of scale formation -softening of hard water -external treatment zeolite and demineralization - internal treatment- boiler compounds (phosphate, calgon, carbonate, colloidal) - caustic embrittlement-boiler corrosion-priming and foaming-desalination of brackish water -reverse osmosis.

UNIT II ELECTROCHEMISTRY AND CORROSION

9

Electrochemical cell - redox reaction, electrode potential- origin of electrode potential-oxidation potential- reduction potential, measurement and applications - electrochemical series and its significance - Nernst equation (derivation and problems). Corrosion-causes- factors- types-chemical, electrochemical corrosion (galvanic, differential aeration), corrosion control - material selection and design aspects - electrochemical protection - sacrificial anode method and impressed current cathodic method. Paints-constituents and function. Electroplating of Copper and electroless plating of nickel.

UNIT III ENERGY SOURCES

9

Introduction- nuclear energy- nuclear fission, controlled nuclear fission- nuclear fusion-differences between nuclear fission and fusion- nuclear chain reactions- nuclear reactor power generator- classification of nuclear reactor- light water reactor- breeder reactor-solar energy conversion- solar cells- wind energy. Batteries and fuel cells:Types of batteries- alkaline battery- lead storage battery- nickel-cadmium battery- lithium battery-fuel cell H_2 - O_2 fuel cell- applications.

UNIT IV **ENGINEERING MATERIALS**

9

Abrasives: definition, classification or types, grinding wheel, abrasive paper and cloth. Refractories: definition, characteristics, classification, properties – refractoriness and RUL, dimensional stability, thermal spalling, thermal expansion, porosity; Manufacture of alumina, magnesite and silicon carbide, Portland cement- manufacture and properties - setting and hardening of cement, special cement- waterproof and white cement-properties and uses. Glass - manufacture, types, properties and uses.

UNIT V FUELS AND COMBUSTION

9

TOTAL: 45 PERIODS

Fuel: Introduction- classification of fuels- calorific value- higher and lower calorific values-coal- analysis of coal (proximate and ultimate)- carbonization- manufacture of metallurgical coke (Otto Hoffmann method) - petroleum- manufacture of synthetic petrol (Bergius process)- knocking- octane number - diesel oil- cetane number - natural gas-compressed natural gas(CNG)- liquefied petroleum gases(LPG)- producer gas- water gas. Power alcohol and bio diesel. Combustion of fuels: introduction- theoretical calculation of calorific value- calculation of stoichiometry of fuel and air ratio- ignition temperature- explosive range - flue gas analysis (ORSAT Method).

TEXT BOOKS

1. Vairam S, Kalyani P and SubaRamesh., "Engineering Chemistry"., Wiley India PvtLtd.. New Delhi., 2011

2. Dara S.S and Umare S.S. "Engineering Chemistry", S. Chand & Company Ltd., New Delhi , 2010

REFERENCE BOOKS

- 1 Kannan P. and Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company Pvt. Ltd. Chennai, 2009
- 2. AshimaSrivastava and Janhavi N N., "Concepts of Engineering Chemistry", ACME Learning Private Limited., New Delhi., 2010.
- 3. RenuBapna and Renu Gupta., "Engineering Chemistry", Macmillan India Publisher Ltd., 2010.
- 4 Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., New Delhi., 2010

GE6252 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

4 0 0 4

UNIT I ELECTRICAL CIRCUITS & MEASURMENTS

12

Ohm's Law – Kirchoff's Laws – Steady State Solution of DC Circuits – Introduction to AC Circuits – Waveforms and RMS Value – Power and Power factor – Single Phase and Three Phase Balanced Circuits.

Operating Principles of Moving Coil and Moving Iron Instruments (Ammeters and Voltmeters), Dynamometer type Watt meters and Energy meters.

UNIT II ELECTRICAL MECHANICS

12

Construction, Principle of Operation, Basic Equations and Applications of DC Generators, DC Motors, Single Phase Transformer, single phase induction Motor.

UNIT III SEMICONDUCTOR DEVICES AND APPLICATIONS

12

Characteristics of PN Junction Diode – Zener Effect – Zener Diode and its Characteristics – Half wave and Full wave Rectifiers – Voltage Regulation.

Bipolar Junction Transistor – CB, CE, CC Configurations and Characteristics – Elementary Treatment of Small Signal Amplifier.

UNIT IV DIGITAL ELECTRONICS

12

Binary Number System – Logic Gates – Boolean Algebra – Half and Full Adders – Flip-Flops – Registers and Counters – A/D and D/A Conversion (single concepts)

UNIT V FUNDAMENTALS OF COMMUNICATION ENGINEERING

12

Types of Signals: Analog and Digital Signals – Modulation and Demodulation: Principles of Amplitude and Frequency Modulations.

Communication Systems: Radio, TV, Fax, Microwave, Satellite and Optical Fibre (Block Diagram Approach only).

TOTAL: 60 PERIODS

TEXT BOOKS:

- 1. Mittle N., "Basic Electrical Engineering", Tata McGraw Hill Edition, New Delhi, 1990.
- 2. Sedha R.S., "Applied Electronics", S. Chand & Co., 2006.

REFERENCES:

- 1. Muthusubramanian R, Salivahanan S and Muraleedharan K A, "Basic Electrical, Electronics and Computer Engineering", Tata McGraw Hill, Second Edition, (2006).
- 2. Nagsarkar T K and Sukhija M S, "Basics of Electrical Engineering", Oxford press (2005).
- 3. Mehta V K, "Principles of Electronics", S.Chand & Company Ltd, (1994).
- 4. Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw Hill, (2002).
- 5. Premkumar N, "Basic Electrical Engineering", Anuradha Publishers, (2003).

GE6353

ENGINEERING MECHANICS

L T P C 3 1 0 4

OBJECTIVES

 To develop capacity to predict the effect of force and motion in the course of carrying out the design functions of engineering

UNIT I BASICS AND STATICS OF PARTICLES

Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces — Vectorial representation of forces – Vector operations of forces -additions, subtraction, dot product, cross product — Coplanar Forces – rectangular components — Equilibrium of a particle — Forces in space — Equilibrium of a particle in space — Equivalent systems of forces — Principle of transmissibility.

UNIT II EQUILIBRIUM OF RIGID BODIES

12

Free body diagram – Types of supports – Action and reaction forces – stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem – Single equivalent force Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions

UNIT III ROPERTIES OF SURFACES AND SOLIDS

12

Centroids and centre of mass – Centroids of lines and areas - Rectangular, circular, triangular areas by integration – T section, I section, - Angle section, Hollow section by using standard formula –Theorems of Pappus - Area moments of inertia of plane areas – Rectangular, circular, triangular areas by integration – T section, I section, Angle section, Hollow section by using standard formula – Parallel axis theorem and perpendicular axis theorem –Principal moments of inertia of plane areas – Principal axes of inertia-Mass moment of inertia –mass moment of inertia for prismatic, cylindrical and spherical solids from first principle – Relation to area moments of inertia.

UNIT IV DYNAMICS OF PARTICLES

12

Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion -Newton's laws of motion – Work Energy Equation– Impulse and Momentum – Impact of elastic bodies.

UNIT V FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS 12

Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction –wedge friction-. Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

TOTAL: 60 PERIODS

TEXT BOOKS:

- 1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and Dynamics", 8th Edition, Tata McGraw-Hill Publishing company, New Delhi (2004).
- 2. Vela Murali, "Engineering Mechanics", Oxford University Press (2010)

REFERENCES:

- 1. Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition, Pearson Education (2010).
- 2. Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics Statics and Dynamics", 4th Edition, Pearson Education (2006)
- 3. Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics Volume 1, Dynamics- Volume 2", Third Edition, John Wiley & Sons,(1993)
- 4. Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3rd Edition, Vikas Publishing House Pvt. Ltd., (2005).
- 5. Bhavikatti, S.S and Rajashekarappa, K.G., "Engineering Mechanics", New Age International (P) Limited Publishers, (1998).
- 6. Kumar, K.L., "Engineering Mechanics", 3rd Revised Edition, Tata McGraw-Hill Publishing company, New Delhi (2008)

GE6261 COMPUTER AIDED DRAFTING AND MODELING LABORATORY L T P C 0 1 2 2

List of Exercises using software capable of Drafting and Modeling

- 1. Study of capabilities of software for Drafting and Modeling Coordinate systems (absolute, relative, polar, etc.) Creation of simple figures like polygon and general multi-line figures.
- 2. Drawing of a Title Block with necessary text and projection symbol.
- 3. Drawing of curves like parabola, spiral, involute using Bspline or cubic spline.
- 4. Drawing of front view and top view of simple solids like prism, pyramid, cylinder, cone, etc., and dimensioning.
- 5. Drawing front view, top view and side view of objects from the given pictorial views (eg. V-block, Base of a mixie, Simple stool, Objects with hole and curves).
- 6. Drawing of a plan of residential building (Two bed rooms, kitchen, hall, etc.)
- 7. Drawing of a simple steel truss.
- 8. Drawing sectional views of prism, pyramid, cylinder, cone, etc.
- 9. Drawing isometric projection of simple objects.
- 10. Creation of 3-D models of simple objects and obtaining 2-D multi-view drawings from 3-D model.

Note: Plotting of drawings must be made for each exercise and attached to the records written by students.

List of Equipments for a batch of 30 students:

- 1. Pentium IV computer or better hardware, with suitable graphics facility -30 No.
- 2. Licensed software for Drafting and Modeling. 30 Licenses
- 3. Laser Printer or Plotter to print / plot drawings 2 No.

TOTAL: 45 PERIODS

PHYSICS LABORATORY – II

(Any FIVE Experiments)

- 1. Determination of Young's modulus by uniform bending method
- 2. Determination of band gap of a semiconductor
- com 3. Determination of Coefficient of viscosity of a liquid – Poiseuille's method
- 4. Determination of Dispersive power of a prism Spectrometer
- 5. Determination of thickness of a thin wire Air wedge method
- 6. Determination of Rigidity modulus Torsion pendulum

CHEMISTRY LABORATORY

(Any FIVE Experiments)

- Determination of alkalinity in water sample 1
- Determination of total, temporary & permanent hardness of water by EDTA 2 method
- Estimation of copper content of the given solution by EDTA method 3
- Estimation of iron content of the given solution using potentiometer 4
- Estimation of sodium present in water using flame photometer 5
- Corrosion experiment weight loss method 6
- 7 Conductometric precipitation titration using BaCl₂ and Na₂SO₄
- Determination of CaO in Cement.

TOTAL: 30 PERIODS

REFERENCES:

- . Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New York (2001).
- 2. Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of practical organic chemistry, LBS Singapore (1994).
- 3. Jeffery G.H, Bassett J., Mendham J. and Denny R.C., "Vogel's Text book of quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.
- 4. Kolthoff I.M. and Sandell E.B. et al. Quantitative chemical analysis, Mcmillan, Madras 1980
- Laboratory classes on alternate weeks for Physics and Chemistry.

GE6263	COMPUTER PROGRAMMING LABORATORY	L T P C 0 1 2 2
	LIST OF EXPERIMENTS	0 1 2 2
1. UNIX COMM	ANDS	15
Study of Unix (OS - Basic Shell Commands - Unix Editor	
2. SHELL PRO	OGRAMMING	15
Simple Shell p	rogram - Conditional Statements - Testing and Loops	
3. C PROGRA	MMING ON UNIX	15
Dynamic Storag	ge Allocation-Pointers-Functions-File Handling	
	то	TAL: 45 PERIODS

HARDWARE / SOFTWARE REQUIREMENTS FOR A BATCH OF 30 STUDENTS

Hardware

- 1 UNIX Clone Server
- 3 3 Nodes (thin client or PCs)
- Printer 3 Nos.

Software

- OS UNIX Clone (33 user license or License free Linux)
- Compiler C