ANNA UNIVERSITY, CHENNAI

AFFILIATED INSTITUTIONS

REGULATIONS 2013

II SEMESTER CURRICULUM

B.E. Electrical and Electronics Engineering

SEMESTER II

Course Code	Course Title	L	Т	P_	С
HS6251	Technical English - II	3	1	0	4
MA6251	Mathematics - II	3	1	0	4
PH6251	Engineering Physics - II	3	0	0	- 3
CY6251	Engineering Chemistry - II	3	0	0	3
GE6251	Basic Civil and Mechanical Engineering			0	4
EE6201	Circuit Theory	3	1	0	4
PRACTICAL	Course Title	L	Т	Р	С
GE6262	Physics and Chemistry Laboratory - II	0	0	F 2	1
GE6263	Computer Programming Laboratory	0	1	2	2
EE6211	Electric Circuits Laboratory	0	0	3	2
	TOTAL	-	4	7	27
	elle-				

II SEMESTER SYLLABI

B. E. ELECTRICAL AND ELECTRONICS ENGINEERING

HS6251

TECHNICAL ENGLISH II

L T P C 3 1 0 4

OBJECTIVES:

- To make learners acquire listening and speaking skills in both formal and informal contexts.
- To help them develop their reading skills by familiarizing them with different types of reading strategies.
- To equip them with writing skills needed for academic as well as workplace contexts.
- To make them acquire language skills at their own pace by using e-materials and language lab components.

OUTCOMES:

Learners should be able to

- speak convincingly, express their opinions clearly, initiate a discussion, negotiate, argue using appropriate communicative strategies.
- write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.
- read different genres of texts, infer implied meanings and critically analyse and evaluate them for ideas as well as for method of presentation.
- listen/view and comprehend different spoken excerpts critically and infer unspoken and implied meanings.

UNIT I

9 + 3

Listening - Listening to informal conversations and participating; Speaking - Opening a conversation (greetings, comments on topics like weather) Turn taking - Closing a conversation (excuses, general wish, positive comment, thanks); Reading - Developing analytical skills, Deductive and inductive reasoning - Extensive reading; Writing - Effective use of SMS for sending short notes and messages - Using 'emoticons' as symbols in email messages; Grammar - Regular and irregular verbs - Active and passive voice; Vocabulary - Homonyms (e.g. 'can') - Homophones (e.g. 'some', 'sum'); E-materials - Interactive exercise on Grammar and vocabulary – blogging; Language Lab - Listening to different types of conversation and answering questions.

UNIT II

9 + 3

Listening - Listening to situation based dialogues; Speaking - Conversation practice in real life situations, asking for directions (using polite expressions), giving directions (using imperative sentences), Purchasing goods from a shop, Discussing various aspects of a film (they have already seen) or a book (they have already read); Reading - Reading a short story or an article from newspaper, Critical reading, Comprehension skills; Writing - Writing a review / summary of a story / article, Personal letter (Inviting your friend to a function, congratulating someone for his / her success, thanking one's friends / relatives); Grammar - modal verbs, Purpose expressions; Vocabulary - Phrasal verbs and their meanings, Using phrasal verbs in sentences; E-materials - Interactive exercises on Grammar and vocabulary, Extensive reading activity (reading stories / novels), Posting reviews in blogs - Language Lab - Dialogues (Fill up exercises), Recording students' dialogues.

UNIT III

Listening - Listening to the conversation - Understanding the structure of conversations; Speaking - Conversation skills with a sense of stress, intonation, pronunciation and meaning - Seeking information – expressing feelings (affection, anger, regret, etc.); Reading - Speed reading – reading passages with time limit - Skimming; Writing - Minutes of meeting – format and practice in the preparation of minutes - Writing summary after reading articles from journals - Format for journal articles – elements of technical articles (abstract, introduction, methodology, results, discussion, conclusion, appendices, references) - Writing strategies; Grammar - Conditional clauses - Cause and effect expressions; Vocabulary - Words used as nouns and verbs without any change in the spelling (e.g. 'rock', 'train', 'ring'); E-materials - Interactive exercise on Grammar and vocabulary - Speed Reading practice exercises; Language Lab - Intonation practice using EFLU and RIE materials – Attending a meeting and writing minutes.

UNIT IV

Listening - Listening to a telephone conversation, Viewing model interviews (face-to-face, telephonic and video conferencing); Speaking - Role play practice in telephone skills - listening and responding, -asking questions, -note taking – passing on messages, Role play and mock interview for grasping interview skills; Reading - Reading the job advertisements and the profile of the company concerned – scanning; Writing - Applying for a job – cover letter - résumé preparation – vision, mission and goals of the candidate; Grammar - Numerical expressions - Connectives (discourse markers); Vocabulary -Idioms and their meanings – using idioms in sentences; E-materials - Interactive exercises on Grammar and Vocabulary - Different forms of résumés- Filling up a résumé / cover letter; Language Lab - Telephonic interview – recording the responses - e-résumé writing.

UNIT V

Listening - Viewing a model group discussion and reviewing the performance of each participant - Identifying the characteristics of a good listener: Speaking Group discussion skills – initiating the discussion – exchanging suggestions and proposals – expressing dissent/agreement – assertiveness in expressing opinions – mind mapping technique; Reading - Note making skills – making notes from books, or any form of written materials - Intensive reading; Writing – Checklist - Types of reports – Feasibility / Project report – report format – recommendations / suggestions – interpretation of data (using charts for effective presentation); Grammar - Use of clauses; Vocabulary – Collocation; E-materials - Interactive grammar and vocabulary exercises - Sample GD - Pictures for discussion, Interactive grammar and vocabulary exercises; Language Lab - Different models of group discussion.

TOTAL: 60 PERIODS

TEXTBOOKS

Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012

Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011

REFERENCES

- 1. Anderson, Paul V. Technical Communication: A Reader-Centered Approach. Cengage. New Delhi. 2008
- 2. Muralikrishna, & Sunita Mishra. Communication Skills for Engineers. Pearson, New Delhi. 2011
- 3. Riordan, Daniel. G. Technical Communication. Cengage Learning, New Delhi. 2005
- 4. Sharma, Sangeetha & Binod Mishra. Communication Skills for Engineers and Scientists. PHI Learning, New Delhi. 2009
- 5. Smith-Worthington, Darlene & Sue Jefferson. Technical Writing for Success. Cengage, Mason USA. 2007

9 + 3

9 + 3

EXTENSIVE Reading (Not for Examination)

1. Khera, Shiv. You can Win. Macmillan, Delhi. 1998.

Websites

- 1. http://www.englishclub.com
- 2. http://owl.english.purdue.edu

TEACHING METHODS:

- Lectures
- Activities conducted individually, in pairs and in groups like individual writing and presentations, group discussions, interviews, reporting, etc
- Long presentations using visual aids
- Listening and viewing activities with follow up activities like discussions, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc
- Projects like group reports, mock interviews etc using a combination of two or more of the language skills

EVALUATION PATTERN:

Internal assessment: 20%

3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like

- Project
- Assignment
- Report
- Creative writing, etc

All the four skills are to be tested with equal weightage given to each.

- ✓ Speaking assessment: Individual presentations, Group discussions
- Reading assessment: Reading passages with comprehension questions graded following Bloom's taxonomy
- Writing assessment: Writing essays, CVs, reports etc. Writing should include grammar and vocabulary.

Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content graded following Bloom's taxonomy.

nd Semester Examination: 80%

conduction, elasticity, fluid dynamics and flow the of electric current.

• To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

• To make the student acquire sound knowledge of techniques in solving ordinary differential

• To acquaint the student with the concepts of vector calculus, needed for problems in all

• To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat

UNIT I VECTOR CALCULUS

engineering disciplines.

Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem in a plane, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds.

UNIT II ORDINARY DIFFERENTIAL EQUATIONS

equations that model engineering problems.

Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

UNIT III LAPLACE TRANSFORM

Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions – Transform of periodic functions. Inverse Laplace transform -Statement of Convolution theorem – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

UNIT IV ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z^2 , e^z and bilinear transformation.

COMPLEX INTEGRATION

Complex integration – Statement and applications of Cauchy's integral theorem and Cauchy's integral formula – Taylor's and Laurent's series expansions – Singular points – Residues – Cauchy's residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

TEXT BOOKS:

UNITV

- 1. Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd.,(2011).
- 2. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, (2011).

MATHEMATICS – II

MA6251

OBJECTIVES:

9+3

9+3

9+3

9+3

9+3

TOTAL: 60 PERIODS

REFERENCES:

- 1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., (2011)
- 2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, (2012).
- 3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, (2012).
- 4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2008).

PH6251

ENGINEERING PHYSICS – II

OBJECTIVES:

 To enrich the understanding of various types of materials and their applications engineering and technology.

UNIT I CONDUCTING MATERIALS

Conductors – classical free electron theory of metals – Electrical and thermal conductivity – Wiedemann – Franz law – Lorentz number – Draw backs of classical theory – Quantum theory – Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.

UNIT II SEMICONDUCTING MATERIALS

Intrinsic semiconductor – carrier concentration derivation – Fermi level – Variation of Fermi level with temperature – electrical conductivity – band gap determination – compound semiconductors -direct and indirect band gap- derivation of carrier concentration in n-type and p-type semiconductor – variation of Fermi level with temperature and impurity concentration – Hall effect –Determination of Hall coefficient – Applications.

UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS

Origin of magnetic moment – Bohr magneton – comparison of Dia, Para and Ferro magnetism – Domain theory – Hysteresis – soft and hard magnetic materials – antiferromagnetic materials – Ferrites and its applications

Superconductivity : properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High T_c superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

UNIT IV DIELECTRIC MATERIALS

Electrical susceptibility – dielectric constant – electronic, ionic, orientational and space charge polarization – frequency and temperature dependence of polarisation – internal field – Claussius – Mosotti relation (derivation) – dielectric loss – dielectric breakdown – uses of dielectric materials (capacitor and transformer) – ferroelectricity and applications.

UNIT V ADVANCED ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials– Preparation -pulsed laser deposition – chemical vapour deposition – Applications – NLO materials –Birefringence- optical Kerr effect – Classification of Biomaterials and its applications

TOTAL: 45 PERIODS

9

9

9

L T P C 3 0 0 3

9

TEXT BOOKS:

- 1. Arumugam M., Materials Science. Anuradha publishers, 2010
- 2. Pillai S.O., Solid State Physics, New Age International(P) Ltd., publishers, 2009

REFERENCES:

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2011
- 2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011
- 3. Mani P. Engineering Physics II. Dhanam Publications, 2011
- 4. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009

CY6251

ENGINEERING CHEMISTRY-II

UNIT I WATER TECHNOLOGY

Introduction to boiler feed water-requirements-formation of deposits in steam boilers and heat exchangers- disadvantages (wastage of fuels, decrease in efficiency, boiler explosion) prevention of scale formation -softening of hard water -external treatment zeolite and demineralization - internal treatment- boiler compounds (phosphate, calgon, carbonate, colloidal) - caustic embrittlement-boiler corrosion-priming and foaming- desalination of brackish water -reverse osmosis.

ELECTROCHEMISTRY AND CORROSION UNIT II

Electrochemical cell - redox reaction, electrode potential- origin of electrode potential- oxidation potential- reduction potential, measurement and applications - electrochemical series and its significance - Nernst equation (derivation and problems), Corrosion- causes- factors- typeschemical, electrochemical corrosion (galvanic, differential aeration), corrosion control - material selection and design aspects - electrochemical protection - sacrificial anode method and impressed current cathodic method. Paints- constituents and function. Electroplating of Copper and electroless plating of nickel.

ENERGY SOURCES UNIT III

Introduction- nuclear energy- nuclear fission- controlled nuclear fission- nuclear fusiondifferences between nuclear fission and fusion- nuclear chain reactions- nuclear reactor power generator- classification of nuclear reactor- light water reactor- breeder reactor- solar energy conversion- solar cells- wind energy. Batteries and fuel cells: Types of batteries- alkaline batterylead storage battery- nickel-cadmium battery- lithium battery- fuel cell H₂ -O₂ fuel cellapplications.

UNIT IV **ENGINEERING MATERIALS**

Abrasives: definition, classification or types, grinding wheel, abrasive paper and cloth. Refractories: definition, characteristics, classification, properties - refractoriness and RUL, dimensional stability, thermal spalling, thermal expansion, porosity; Manufacture of alumina, magnesite and silicon carbide, Portland cement- manufacture and properties - setting and hardening of cement, special cement- waterproof and white cement-properties and uses. Glass - manufacture, types, properties and uses.

9

т Ρ С

0 0

3

9

FUELS AND COMBUSTION UNIT V

Fuel: Introduction- classification of fuels- calorific value- higher and lower calorific values- coalanalysis of coal (proximate and ultimate)- carbonization- manufacture of metallurgical coke (Otto Hoffmann method) - petroleum- manufacture of synthetic petrol (Bergius process)- knockingoctane number - diesel oil- cetane number - natural gas- compressed natural gas(CNG)liquefied petroleum gases(LPG)- producer gas- water gas. Power alcohol and bio diesel. Combustion of fuels: introduction- theoretical calculation of calorific value- calculation of stoichiometry of fuel and air ratio- ignition temperature- explosive range - flue gas analysis (ORSAT Method).

TEXT BOOKS

- 1. Vairam S, Kalyani P and SubaRamesh., "Engineering Chemistry"., Wiley India PvtLtd., New Delhi., 2011
- 2. DaraS.S,UmareS.S."Engineering Chemistry", S. Chand & Company Ltd., New Delhi, 2010

REFERENCES

- Kannan P. and Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech Publishing 1 Company Pvt. Ltd. Chennai, 2009
- 2. AshimaSrivastava and Janhavi N N., "Concepts of Engineering Chemistry", ACME Learning Private Limited., New Delhi., 2010.
- 3. RenuBapna and Renu Gupta., "Engineering Chemistry", Macmillan India Publisher Ltd., 2010.
- 4 Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., New Delhi., 2010

GE6251

UNIT

BASIC CIVIL AND ME ANICAL ENGINEERING ENGINEERING MI

SURVEYING AND CIVIL ENGINEERING MATERIALS UNIT I 15 Surveying: Objects - types - classification - principles - measurements of distances - angles leveling - determination of areas - illustrative examples.

Civik Engineering Materials: Bricks – stones – sand – cement – concrete – steel sections.

BUILDING COMPONENTS AND STRUCTURES

Foundations: Types, Bearing capacity – Requirement of good foundations.

Superstructure: Brick masonry - stone masonry - beams - columns - lintels - roofing - flooring plastering – Mechanics – Internal and external forces – stress – strain – elasticity – Types of Bridges and Dams – Basics of Interior Design and Landscaping.

TOTAL: 30 PERIODS

B – MECHANICAL ENGINEERING

UNIT III POWER PLANT ENGINEERING

Introduction, Classification of Power Plants – Working principle of steam, Gas, Diesel, Hydro-electric and Nuclear Power plants - Merits and Demerits - Pumps and turbines - working principle of Reciprocating pumps (single acting and double acting) – Centrifugal Pump.

TOTAL PERIODS: 45

9

LTPC 4004

15

UNIT IV IC ENGINES

Internal combustion engines as automobile power plant - Working principle of Petrol and Diesel Engines – Four stroke and two stroke cycles – Comparison of four stroke and two stroke engines – Boiler as a power plant.

REFRIGERATION AND AIR CONDITIONING SYSTEM UNIT V

Terminology of Refrigeration and Air Conditioning. Principle of vapour compression and absorption system - Layout of typical domestic refrigerator - Window and Split type room Air conditioner.

TOTAL: 30 PERIODS

REFERENCES:

- 1. Shanmugam G and Palanichamy M S, "Basic Civil and Mechanical Engineering", Tata McGraw Hill Publishing Co., New Delhi, (1996).
- 2. Ramamrutham S., "Basic Civil Engineering", Dhanpat Rai Publishing Co. (P) Ltd. (1999).
- 3. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies, (2005).
- 4. Venugopal K. and Prahu Raja V., "Basic Mechanical Engineering", Anuradha Publishers, Kumbakonam. (2000).
- 5. Shantha Kumar S R J., "Basic Mechanical Engineering", Hi-tech Publications, Maviladuthural CIRCUIT THEORY (2000).

EE6201

BASIC CIRCUITS ANALYSIS UNIT I

Ohm's Law – Kirchoffs laws – DC and AC Circuits – Resistors in series and parallel circuits – Mesh current and node voltage method of apalysis for D.C and A.C. circuits – Phasor Diagram – Power, Power Factor and Energy

NETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND UNIT II AC CIRCUITS

Network reduction: voltage and current division, source transformation - star delta conversion. Thevenins and Novton & Theorem – Superposition Theorem – Maximum power transfer theorem – Reciprocity Theorem.

UŇIT III **RESONANCE AND COUPLED CIRCUITS**

Series and paralled resonance - their frequency response - Quality factor and Bandwidth - Self and mutual inductance - Coefficient of coupling - Tuned circuits - Single tuned circuits.

UNIT IV TRANSIENT RESPONSE FOR DC CIRCUITS

Transient response of RL, RC and RLC Circuits using Laplace transform for DC input and A.C. with sinusoidal input – Characterization of two port networks in terms of Z,Y and h parameters.

UNIT V THREE PHASE CIRCUITS

Three phase balanced / unbalanced voltage sources - analysis of three phase 3-wire and 4-wire circuits with star and delta connected loads, balanced & un balanced – phasor diagram of voltages and currents – power and power factor measurements in three phase circuits.

TOTAL: 60 PERIODS

10

LTPC 3104

12

12

12

12

TEXT BOOKS:

- 1. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", Tata McGraw Hill publishers, 6th edition, New Delhi, 2003.
- 2. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, Tata McGraw-Hill, New Delhi, 2001.

REFERENCES:

- 1. Paranjothi SR, "Electric Circuits Analysis," New Age International Ltd., New Delhi, (1996).
- 2. Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", Tata McGraw Hill, (2007).
- 3. Chakrabati A, "Circuits Theory (Analysis and synthesis), Dhanpath Rai & Sons, New Delhi, (1999).
- 4. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, (2003).

GE6262

PHYSICS AND CHEMISTRY LABORATORY - II

PHYSICS LABORATORY -

(Any FIVE Experiments)

- 1. Determination of Young's modulus by uniform bending method
- 2. Determination of band gap of a semiconductor
- 3. Determination of Coefficient of viscosity of a liquid -Poiseuille's method
- 4. Determination of Dispersive power of a prism Spectrometer
- 5. Determination of thickness of a thin wire Air wedge method
- 6. Determination of Rigidity modulus Torsion pendulum

CHEMISTRY LABORATORY - II

(Any FIVE Experiments)

Determination of alkalinity in water sample

- Determination of total, temporary & permanent hardness of water by EDTA method
- Estimation of copper content of the given solution by EDTA method
- 4 Estimation of iron content of the given solution using potentiometer
- 5 Estimation of sodium present in water using flame photometer
- 6 Corrosion experiment weight loss method
- 7 Conductometric precipitation titration using BaCl₂ and Na₂SO₄
- 8 Determination of CaO in Cement.

TOTAL: 30 PERIODS

REFERENCES:

- 1. Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New York (2001).
- 2. Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of practical organic chemistry, LBS Singapore (1994).

- 3. Jeffery G.H, Bassett J., Mendham J. and Denny R.C., "Vogel's Text book of quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.
- 4. Kolthoff I.M. and Sandell E.B. et al. Quantitative chemical analysis, Mcmillan, Madras 1980
- Laboratory classes on alternate weeks for Physics and Chemistry.

GE6263 COMPUTER PROGRAMMING LABORATORY L T P C 0 1 2 2

LIST OF EXPERIMENTS

1. UNIX COMMANDS

Study of Unix OS - Basic Shell Commands - Unix Editor

2. SHELL PROGRAMMING

Simple Shell program - Conditional Statements - Testing and Loops

3. C PROGRAMMING ON UNIX

Dynamic Storage Allocation-Pointers-Functions-File Handling

TOTAL: 45 PERIODS

CC

15

15

HARDWARE / SOFTWARE REQUIREMENTS FOR A BATCH OF 30 STUDENTS

Hardware

- 1 UNIX Clone Server
- 3 3 Nodes (thin client or PC
- Printer 3 Nos.

Compiler - C

Software

• OS - UNIX Clone (33 user license or License free Linux)

EE6211

ELECTRIC CIRCUITS LABORATORY

L	Т	Ρ	С
0	0	3	2

TOTAL: 45 PER

LIST OF EXPERIMENTS

- 1. Experimental verification of Kirchhoff's voltage and current laws
- 2. Experimental verification of network theorems (Thevenin, Norton, Superposition and maximum power transfer Theorem).
- 3. Study of CRO and measurement of sinusoidal voltage, frequency and power factor.
- 4. Experiental determination of time constant of series R-C electric circuits.
- 5. Experimental determination of frequency response of RLC circuits.
- 6. Design and Simulation of series resonance circuit.
- 7. Design and Simulation of parallel resonant circuits.
- 8. Simulation of low pass and high pass passive filters.
- 9. Simulation of three phase balanced and unbalanced star, delta networks circuits.
- 10. Experimental determination of power in three phase circuits by two-watt meter method .
- 11. Calibration of single phase energy meter.
- 12. Determination of two port network parameters.

LABORATORY REQUIREMENTS FOR BATCH OF 30 STUDENTS

- 1 Regulated Power Supply: 0 15 V D.C 10 Nos / Distributed Power Sourd
- 2 Function Generator (1 MHz) 10 Nos.
- 3 Single Phase Energy Meter 1 No.
- 4 Oscilloscope (20 MHz) 10 Nos.
- 5 Digital Storage Oscilloscope (20 MHz) 1 No.
- 6 Circuit Simulation Software (5 Users) (Pspice / Matlab /other Equivalent software Package) with PC(5 Nos.) and Printer (1 No.)
- 7 AC/DC Voltmeters (10 Nos.), Ammeters (10 Nos.) and Multi-meters (10 Nos.)
- 8 Single Phase Wattmeter 3 Nos.
- 9 Decade Resistance Box, Decade Inductance Box, Decade Capacitance Box Each 6 Nos.
- 10 Circuit Connection Boards 10 Nos.

NN

Necessary Quantities of Resistors, Inductors, Capacitors of various capacities (Quarter Watt to 10 Watt)