|            | <br> | <br> |  |
|------------|------|------|--|
| Reg. No. : |      |      |  |

## Question Paper Code: 11011

B.E./B.Tech. DEGREE EXAMINATION, JUNE 2011.

Common to ECE, CSE, IT and Biomedical Engineering Branches

Second Semester

147201 — ELECTRIC CIRCUITS AND ELECTRON DEVICES

(Regulation 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- 1. State the maximum power transfer theorem.
- 2. Apply KVL to the following circuit and find in



- 3. What is meant by quality factor?
- 4. Determine the current is through the resistor in following figure at  $t = \ln s$  if  $i_R(0) = 6A$ .



- 5. Differentiate between intrinsic and extrinsic semiconductors.
- 6. Draw the symbol of P-channel MOSFET.
- 7. Give short notes on diffusion capacitance.

- 8. Draw the equivalent circuit of CE and CC configuration of transistors.
- 9. What is
  - (a) LED
  - (b) LCD?
- 10. Draw the V-I characteristics of Triac.

PART B 
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) (i) Find an equivalent resistance between A and B in the following circuit using star-delta transformation. (8)



(ii) Find the power delivered by the 50 V source in the circuit.



(b) Determine the current in the  $10\Omega$  resistor of the following circuit using super position theorem. (16)



(8)

12. (a) The circuit shown below is under steady state with switch at position 1. At t=0, switch is moved to position 2. Find i(t).



Or

- (b) A coil having a resistance of  $20\,\Omega$  and an inductance of  $200\,\mu$ H is connected in parallel with the variable capacitor. This parallel combination is connected in series with resistance of  $8000\,\Omega$ . A voltage of  $230\,\mathrm{V}$  at frequency of  $10^6\,\mathrm{Hz}$  is applied across the circuit. Calculate
  - (i) Value of capacitance at resonance
  - (ii) Q factor of the circuit
  - (iii) Dynamic impedance of the circuit
  - (iv) Total circuit current.

(16)

- 13. (a) (i) Draw and explain the V-I characteristics of PN diode. (8)
  - (ii) Explain how temperature affects the power dissipation in a PN diode. (3)
  - (iii) A diode with 700 mW power dissipation at 25°C has a 5 mW/°C derating factor. If the forward voltage drop remains constant at 0.7 V, Calculate the maximum forward current at 25°C and at 65°C temperatures.

0r

- (b) (i) Draw the symbol of zener diode and explain the V-I characteristics of zener diode. (8)
  - (ii) Derive the current equation of a diode. (8)
- 14. (a) What is FET? Compare the N-channel and P-channel JFET with its operation. (16)

Or

- (b) (i) Briefly explain the operation of enhancement and depletion type MOSFET. (8)
  - (ii) Draw and explain the input and output characteristics of BJT with CB configuration. (8)

15. (a) (i) With neat sketch explain the SCR characteristics.

(i) With neat sketch explain the 5 set
(ii) Draw and explain the two transistor equivalent model of SCR. (8)

Or

(b) Explain about the working of photo-conductive cell with its characteristics and applications. (16)

(8)